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approach14 can be used in connection with many photo- 
chemical problems such as the effect of substituents on the 
mechanism and stereochemistry of photochemical pericy- 
clic reactions. 
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Neuman and coworkers1 have measured apparent acti- 
vation volumes for a number of free-radical initiators. 
These parameters (AV,*) were small for peresters pre- 
viously proposed2 to undergo concerted (C-C and 0-0) de- 
composition and large for tert- butyl perbenzoate. The acti- 
vation volumes were thus considered an additional criteri- 
on of mechanism. We,3 as well as  other^,^ have examined 
viscosity effects on overall rates of decomposition of perox- 
ides. We have used Scheme I as a general one in analyzing 
the results quantitatively. Equations 1 and 2 (where k ,  and 
k ,  are observables) give the predictions of this scheme for 
overall disappearance of initiators. 

Assuming kd i s  the only viscosity-sensitive (interpretive) 
rate constant and knowing the value of k l  allows the analy- 
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sis of the k,-fluidity dependence in terms of fraction re- 
combination. Pryor and coworkers4 have used essentially 
the same scheme and proposed extrapolation of Ilk,  us. vu 
to zero viscosity as a means of estimating the value of l/k1. 
An alternative is to measure the rate constant for scram- 
bling of carbonyl-lsO ( k s ) .  Under the assumption above, 
the sum of k ,  + 12, (k.1) should be constant. 

These sums were not constant for either of the two cases 
which we investigated3 (Table I, Scheme I; R = Ph, CH3; R' 
= t-Bu). We wish to point out that the positive activation 
volumes determined by the external pressure variation1 
imply that kl could only fortui tously  be constant over the 
range of solvents investigated because of differences in in- 
ternal solvent p r e ~ s u r e . ~  

It is possible to circumvent the problems of calculating 
internal pressures by defining an empirical set of differen- 
tial solvent pressures (DSP) from a reaction of known acti- 
vation volume. This is analogous to the definition of Ham- 
mettle substituent constants from an arbitrary reaction. 
The apparent activation volume for tert-butyl perbenzoate 
is reportedll to be +10.4 cc/mol in cumene and +12.9 cc/ 
mol in chlorobenzene. Assuming that the activation volume 
in the hydrocarbon solvents which we have used is similar12 
and that the differential solvation energy is zero, the rela- 
tive rates (Table I) can be used to determine the differen- 
tial solvent pressures for the solvent series a t  130' (Figure 
1, Table I). A plot of In ( k ,  + k,)  for the peracetate, also at  
130°, us. the DSP values is linear, giving an activation vol- 
ume of +5 cc/mol (Figure l), which is in agreement with 
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Figure 1. Act ivat ion volumes f rom empir ical  d i f ferent ia l  solvent 
pressures. 
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Table I 
Rate Constantsn for Decomposition and  l80 Scrambling at 130" 

RC 0 3-t-B u 

Solvent bo (R = CH3) k s  (R = CH3) ko i. k s  ( R  = CH3) k, (R = Ph) ks (R = Ph) k, + k ,  (R = Ph) DSP,b a h  

Hexane 50.8 13.1 63.9 3.72 0.16 3.88 0 
Isooctane 3.36 0.20 3.56 288 
Dodecane 3.08 (0.24) 3.42 534 
60% hexane oil 44.3 16.6 60.9 3.39 (0.28) 3.67 2 63 
30% hexane oil 38.0 19.3 57.1 3.04 (0.36) 3.40 57 1 
Paraffin oil 31.3 20.8 52.1 2.33 (0.50) 2.83 1320 

this work. 
X lo5 sec-I; values in parentheses are interpolated from Figure 1, ref 3b. Empirical differential solvent pressures from Figure 1 of 

Table I1 
Activation Volumes from DSP for RCOs-t-Bu 

R Rate  constant AV*DSP, cc/mola A V*e,t,cclmol R e g i s w  no. 

C6H5 ko3b  (+ 12 500) +10.4, +12.91i 6 14 -45 -9 

CH3 k ,  + ks3a 1-5.0 (+5)'4 107 -71 -1 
CH,OCGH,CH2 koi3 +3.0 +3. 116 27396-21-0 

(CH,)zCH koi4 -1.0 +1.615 109 -13 -7 

C6H5 k ,  +- ks3b +8.0 

C6H5CH2 kOi3  -2.0 +1.7" 3377 -89 -7 

Using the empirical differential solvent pressures derived here. Using external pressure variation. 1 i"he value for a simple one-bond 
process. 

expectations from the external pressure studies of Neu- 
man. 

It is possible to estimate the k ,  values for the perben- 
zoate by comparison with the corresponding hyponitrite 
(ref 3b, Figure 1). These values, summed with the appro- 
priate k, , ,  give an activation volume of i-8 cc/mol for the 
0-0 bond homolysis of the perbenzoate. Table I1 contains 
the activation volumes for all the compounds for which we 
have data. Tbe agreement with external pressure measure- 
ments is quite good if the sign inversions for the phenyl- 
acetyll1J3 and isobutyryl14 compounds are attributed to 
differential solvation. Solvation effects have similarly been 
invoked to explain the nonlinearity of the external pressure 
plots for these systems.15 

Finally, we note that the apparent activation volume for 
the tert-butyl p-nitrophenylperacetate, as estimated from 
cohesive energy densities of the hydrocarbon solvents and 
the rate data of Pryor and Smith,4a is very large (+E cc/ 
mol). This reinforces their suggestion that this compound 
may be in part a one-bond initiator. A large value of AV* is 
an indication of reversibility and not of intrinsic differ- 
ences in transition state structures for the one-bond com- 
pared to two-bond process. The k,/k, method of estimating 
fraction return is not subject to the complications of vari- 
able k l .  Ruling out 1 , 3 - ~ i g m a t r o p i s m , ~ ~ ~ ' ~  they give the best 
estimate of reversibility in peroxide decomposition. 
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Intramolecular carbene insertions and cycloaddition 
reactions constitute a favorite route to small-ring polycyclic 


